瀚欣制冷设备网 加入收藏  -  设为首页
您的位置:瀚欣制冷设备网 > 制冷设备 > 正文

目录

1,关于太阳能制冷的原理

关于太阳能制冷的原理

  根据不同的能量转换方式,太阳能驱动制冷主要有以下两种方式,一是先实现光─电转换,再以电力制冷;二是进行光─热转换,再以热能制冷。

  电转换
  它是利用光伏转换装置将太阳能转化成电能后,再用于驱动半导体制冷系统或常规压缩式制冷系统实现制冷的方法,即光电半导体制冷和光电压缩式制冷。这种制冷方式的前提是将太阳能转换为电能,其关键是光电转换技术,必须采用光电转换接受器,即光电池,它的工作原理是光伏效应。
  太阳能半导体制冷。太阳能半导体制冷是利用太阳能电池产生的电能来供给半导体制冷装置,实现热能传递的特殊制冷方式。半导体制冷的理论基础是固体的热电效应,即当直流电通过两种不同导电材料构成的回路时,结点上将产生吸热或放热现象。如何改进材料的性能,寻找更为理想的材料,成为了太阳能半导体制冷的重要问题。太阳能半导体制冷在国防、科研、医疗卫生等领域广泛地用作电子器件、仪表的冷却器,或用在低温测仪、器械中,或制作小型恒温器等。目前太阳能半导体制冷装置的效率还比较低,COP 一般约0.2~0.3,远低于压缩式制冷。
  光电压缩式制冷。光电压缩式制冷过程首先利用光伏转换装置将太阳能转化成电能,制冷的过程是常规压缩式制冷。光电压缩式制冷的优点是可采用技术成熟且效率高的压缩式制冷技术便可以方便地获取冷量。光电压缩式制冷系统在日照好又缺少电力设施的一些国家和地区已得到应用,如非洲国家用于生活和药品冷藏。但其成本比常规制冷循环高约3~4 倍。随着光伏转换装置效率的提高和成本的降低,光电式太阳能制冷产品将有广阔的发展前景。

  热转换
  太阳能光热转换制冷,首先是将太阳能转换成热能,再利用热能作为外界补偿来实现制冷目的。光─热转换实现制冷主要从以下几个方向进行,即太阳能吸收式制冷、太阳能吸附式制冷、太阳能除湿制冷、太阳能蒸汽压缩式制冷和太阳能蒸汽喷射式制冷。其中太阳能吸收式制冷已经进入了应用阶段,而太阳能吸附式制冷还处在试验研究阶段。
  太阳能吸收式制冷的研究。太阳能吸收式制冷的研究最接近于实用化,其最常规的配置是:采用集热器来收集太阳能,用来驱动单效、双效或双级吸收式制冷机,工质对主要采用溴化锂- 水,当太阳能不足时可采用燃油或燃煤锅炉来进行辅助加热。系统主要构成与普通的吸收式制冷系统基本相同,唯一的区别就是在发生器处的热源是太阳能而不是通常的锅炉加热产生的高温蒸汽、热水或高温废气等热源。
  太阳能吸附式制冷。太阳能吸附式制冷系统的制冷原理是利用吸附床中的固体吸附剂对制冷剂的周期性吸附、解吸附过程实现制冷循环。太阳能吸附式制冷系统主要由太阳能吸附集热器、冷凝器、储液器、蒸发器、阀门等组成。常用的吸附剂对制冷剂工质对 有活性炭- 甲醇、活性炭- 氨、氯化钙- 氨、硅胶- 水、金属氢化物- 氢等。太阳能吸附式制冷具有系统结构简单、无运动部件、噪声小、无须考虑腐蚀等优点,而且它的造价和运行费用都比较低。

2,太阳能吸收式制冷是如何制冷的?

吸收式制冷是利用两种物质所组成的二元溶液作为工质来达到的。这两种物质在同一压强下有不同的沸点,其中高沸点的组分称为吸收剂,低沸点的组分称为制冷剂。常用的吸收剂—制冷剂组合有两种:一种是溴化锂—水,通常适用于大型中央空调;另一种是水—氨,通常适用于小型空调。吸收式制冷机主要由发生器、冷凝器、蒸发器和吸收器组成。 我们就以溴化锂吸收式制冷机为例来说明吸收式制冷工作原理。在制冷机运行过程中,当溴化锂水溶液在发生器内被热媒水加热后,溶液中的水不断汽化;水蒸气进入冷凝器,被冷却水降温后凝结;随着水的不断汽化,发生器内的溶液浓度不断升高,进入吸收器;当冷凝器内的水通过节流阀进入蒸发器时,急速膨胀而汽化,并在汽化过程中大量吸收蒸发器内冷媒水的热量,从而达到降温制冷的目的;在此过程中,低温水蒸气进入吸收器,被吸收器内的浓溴化锂溶液吸收,溶液浓度逐步降低,由溶液泵送回发生器,完成整个循环。

3,什么是热媒水?

媒水---承载、转运能量的媒介,在空调系统中有冷媒水和热媒水之称(其实是同样的水)。供冷季节制冷机房的冷水机组将所产生的冷量传给冷媒水,并通过它将冷量运送到较远的各种使用场所。反之,在供暖季节同样的媒水流经锅炉、太阳能受热器等能产生热量的设备,将热量传送到上述的各使用场所。 媒水是普通的水,靠媒水泵在密闭的媒水管道系统中循环、运载冷量或热量而基本不会消耗;为了不使长期使用的媒水长菌腐败、变酸腐蚀管道或因水中所含矿物使管道、各类热交换器内结垢影响换热效率,工程人员会根据水质对媒水投加各类的杀菌、中和、镀膜缓蚀等药物,使水质中性,延长设备的使用寿命。 太阳能制冷是通过媒水将太阳能接收器所收集的能量传送给使用热能制冷的设备,如溴化锂吸收式制冷机组来制冷(吸收式机组也有使用蒸汽、工业废热等各种热能制冷的)。这种形式同样可使用地热水制冷,但如果地热水不是作循环使用的,则不能称其为“媒水”。无论那种形式的制冷机工作时都会有噪音,但其比起活塞式、螺杆式、离心式或蒸汽喷射式,噪音算小得多了。仅供参考

4,太阳能制冷的发展历史

20 世纪70 年代以来,受石油危机的影响,许多国家加强了对于可再生能源的支持。太阳能科技突飞猛进,研究领域不断扩大,取得了一批较为重要的成果,如复合抛物面镜聚光集热器、真空管集热器、非晶硅太阳能电池、太阳能热发电、光解水制氢等。1992 年联合国在巴西召开“世界环境与发展大会”,会议通过了《里约热内卢环境与发展宣言》、《21 世纪议程》等一系列重要文件。1992 年以后,世界太阳能利用又进入一个发展期,其特点是太阳能利用与世界可持续发展和环境保护紧密结合并注重科技成果转化为生产力,发展太阳能产业,扩大太阳能利用领域和规模。1996年以来世界光伏发电高速发展,太阳能电池年产量以30%~40%的年增长率高速发展,应用范围越来越广,2000 年世界光伏电池总产量达287.65MW,约有一半左右用于“太阳屋顶”和并网系统。

5,太阳能制冷空调的太阳能制冷空调-研究

20世纪70年代后期,世界各国对太阳能利用的研究蓬勃开展。太阳能固体吸附式制冷是利用固体吸附剂(例如沸石分子筛、硅胶、活性炭、氯化钙等)对制冷剂(水、甲醇、氨等)的吸附(或化学吸收)和解吸作用实现制冷循环的。吸附剂的再生温度可在80—150℃之间,也适合于太阳能的利用。太阳能吸附式制冷系统结构简单、没有运动部件,能制作成小型装置。太阳能吸附式制冷循环为间歇性运行,多用于制冰工况。国外对太阳能吸附式制冷进行了大量的研究和应用开发工作。

6,空气能怎么和太阳能连接?

空气能和太阳能热水器并联安装使用可以,不可以串联起来。 太阳能热水器加热水温是不受控制的,在天气好,加热效果好的时候很有可能水箱内水温会达到甚至超过90℃,这么高的水温,一旦进入到空气能热水器水箱内,会导致空气能系统出现较大的异常故障。 所以不管是空气能热水器还是热泵产品都不可以和太阳能热水器串联使用,而只能并联使用。

7,太阳能为什么被广泛利用?

大家都知道,地球所获得的主要能量都直接或间接地来自太阳。在漫长的历史岁月中,太阳一直不停地为地球提供着光和热。


太阳发出的能量是巨大的,只有二十二亿分之一到达地球,就使地球到处充满生机。地球每分钟得到太阳的能量,相当于燃烧4亿吨煤放出的能量。我们用的煤和石油,都是几千年前贮存的太阳的能量。煤和石油的储藏量是有限的,可是人们的需求量还在不断增长,于是人们开始设法寻找新的能源。太阳能当然是最理想的了,它不会污染环境,而且只要太阳不熄灭,能量就永远也用不完。现在,利用太阳能量的装置有很多,如太阳能、太阳能电池、太阳能房屋等,许多国家还建成了太阳能发电厂。


[我还想知道]


在大约3亿年前古生代石炭纪的时候,地球上到处是茂密的森林,这些树木不断生长,不断死亡,堆积在沼泽地里,树木的遗体慢慢变成了泥炭。由于大地的压力和地热的作用,使泥炭被压在几十米深的地下,变得越来越结实,体积被压缩到只有原来的1/5~1/10那么大,同时放出大量的水分和能挥发的成分,这样,经过了几十万年到几百万年,煤就生成了。


在很久很久以前,海洋里的浮游生物、植物和动物死亡后,它们的尸体沉积在海底,并被泥沙掩埋。后来细菌把这些尸体分解,再加上来自地球内部的高温和地表层的高压,便逐渐形成了石油。

8,太阳能制冷的制冷方式

根据不同的能量转换方式,太阳能驱动制冷主要有以下两种方式,一是先实现光─电转换,再以电力制冷;二是进行光─热转换,再以热能制冷。 它是利用光伏转换装置将太阳能转化成电能后,再用于驱动半导体制冷系统或常规压缩式制冷系统实现制冷的方法,即光电半导体制冷和光电压缩式制冷。这种制冷方式的前提是将太阳能转换为电能,其关键是光电转换技术,必须采用光电转换接受器,即光电池,它的工作原理是光伏效应。太阳能半导体制冷。太阳能半导体制冷是利用太阳能电池产生的电能来供给半导体制冷装置,实现热能传递的特殊制冷方式。半导体制冷的理论基础是固体的热电效应,即当直流电通过两种不同导电材料构成的回路时,结点上将产生吸热或放热现象。如何改进材料的性能,寻找更为理想的材料,成为了太阳能半导体制冷的重要问题。太阳能半导体制冷在国防、科研、医疗卫生等领域广泛地用作电子器件、仪表的冷却器,或用在低温测仪、器械中,或制作小型恒温器等。目前太阳能半导体制冷装置的效率还比较低,COP 一般约0.2~0.3,远低于压缩式制冷。光电压缩式制冷。光电压缩式制冷过程首先利用光伏转换装置将太阳能转化成电能,制冷的过程是常规压缩式制冷。光电压缩式制冷的优点是可采用技术成熟且效率高的压缩式制冷技术便可以方便地获取冷量。光电压缩式制冷系统在日照好又缺少电力设施的一些国家和地区已得到应用,如非洲国家用于生活和药品冷藏。但其成本比常规制冷循环高约3~4 倍。随着光伏转换装置效率的提高和成本的降低,光电式太阳能制冷产品将有广阔的发展前景。 太阳能光热转换制冷,首先是将太阳能转换成热能,再利用热能作为外界补偿来实现制冷目的。光─热转换实现制冷主要从以下几个方向进行,即太阳能吸收式制冷、太阳能吸附式制冷、太阳能除湿制冷、太阳能蒸汽压缩式制冷和太阳能蒸汽喷射式制冷。其中太阳能吸收式制冷已经进入了应用阶段,而太阳能吸附式制冷还处在试验研究阶段。太阳能吸收式制冷的研究。太阳能吸收式制冷的研究最接近于实用化,其最常规的配置是:采用集热器来收集太阳能,用来驱动单效、双效或双级吸收式制冷机,工质对主要采用溴化锂- 水,当太阳能不足时可采用燃油或燃煤锅炉来进行辅助加热。系统主要构成与普通的吸收式制冷系统基本相同,唯一的区别就是在发生器处的热源是太阳能而不是通常的锅炉加热产生的高温蒸汽、热水或高温废气等热源。太阳能吸附式制冷。太阳能吸附式制冷系统的制冷原理是利用吸附床中的固体吸附剂对制冷剂的周期性吸附、解吸附过程实现制冷循环。太阳能吸附式制冷系统主要由太阳能吸附集热器、冷凝器、储液器、蒸发器、阀门等组成。常用的吸附剂对制冷剂工质对 有活性炭- 甲醇、活性炭- 氨、氯化钙- 氨、硅胶- 水、金属氢化物- 氢等。太阳能吸附式制冷具有系统结构简单、无运动部件、噪声小、无须考虑腐蚀等优点,而且它的造价和运行费用都比较低。