卡方分布的期望和方差是什么?
卡方分布的期望和方差是:E(X)=n,D(X)=2n。 t分布:E(X)=0(n>1),D(X)=n/(n-2)(n>2)。 F(m,n)分布:E(X)=n/(n-2)(n>2)。 D(X)=[2n^2*(m+n-2)]/[m(n-2)^2*(n-4)](n>4)。 简介 我们常常把一个式子中独立变量的个数称为这个式子的“自由度”,确定一个式子自由度的方法是:若式子包含有 n 个变量,其中k 个被限制的样本统计量,则这个表达式的自由度为 n-k。 比如中包含ξ1,ξ2,…,ξn这 n 个变量,其中ξ1-ξn-1相互独立,ξn为其余变量的平均值,因此自由度为 n-1。
卡方分布的期望和方差是什么?
卡方分布的期望和方差是:E(X)=n,D(X)=2n t分布:E(X)=0(n>1),D(X)=n/(n-2)(n>2) F(m,n)分布:E(X)=n/(n-2)(n>2) D(X)=[2n^2*(m+n-2)]/[m(n-2)^2*(n-4)](n>4) 卡方分布(χ2分布)是概率论与统计学中常用的一种概率分布,k个独立的标准正态分布变量的平方和服从自由度为k的卡方分布,卡方分布常用于假设检验和置信区间的计算。 正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。它的形状是中间高两边低,图像是一条位于x轴上方的钟形曲线。当μ=0,σ2=1时,称为标准正态分布,记为N(0,1)。 二项分布: 在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。