爱因斯坦相对论简单解释是什么?
爱因斯坦相对论简单解释是爱因斯坦相对论极大地改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念,它发展了牛顿力学,推动物理学发展到一个新的高度。 传统上,在爱因斯坦刚刚提出相对论的初期,人们以所讨论的问题是否涉及非惯性参考系来作为狭义与广义相对论分类的标志。随着相对论理论的发展,这种分类方法越来越显出其缺点—参考系是跟观察者有关的,以这样一个相对的物理对象来划分物理理论,被认为不能反映问题的本质。 爱因斯坦的成就 读过笔者的《相对论英雄谱》以后,相信人们应该不再会抱有这样的观念了。物理学是一条思想的河流,如相对论这样的近代物理学支柱型的理论体系,其思想之深度与广度都决定了创立它的事业远超出单个天才的能力。 这几乎应该是个显而易见的道理。然而,确实长期有人宣称至少广义相对论之建立是爱因斯坦一人之功,而相当长一段时间内笔者对这种论调也是信以为真的。 在浏览过相对论的内容、阅读过相应内容的经典文献后,笔者得出的结论是,相对论是浪漫的拉丁文化和严谨的德意志文化结合的产物,某种意义上说前者似乎应占更大的比重。 德国南部出生、和父母一起在意大利北部住过一段时间、在瑞士完成中学和大学教育并迈出研究第一步的爱因斯坦,无疑地深受这两种文化的熏陶与影响。
爱因斯坦的相对论
相对论是关于时空和重力的理论,主要由爱因斯坦创立,依其研究对象的不同可分为狭义相对论和广义相对论。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础。相对论极大地改变了人类对宇宙和自然的「常识性」观念,提出了「同时的相对性」、「四维时空」、「弯曲时空」等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分古典与非古典的物理学,即「非古典的 量子的」。在这个意义下,相对论仍然是一种古典的理论。 该理论取代了200年前主要由艾萨克·牛顿创立的力学理论,从而改变了20世纪的理论物理学和天文学,它引入的概念,包括时空、同时性之相对性、运动学、重力时间膨胀和劳仑兹收缩。在物理学领域,相对论改善了基本粒子的科学以及它们的基本交互作用,以及迎来核子时代。另外,藉由相对论,物理宇宙学及天体物理学预测了中子星、黑洞、重力波。 爱因斯坦在他1905年的论文《论动体的电动力学》中介绍了狭义相对论。 狭义相对论建立在下列的两个矛盾的古典力学的假设上: 狭义相对性原理(狭义协变性原理):一切的惯性参考系都是平权的,即物理规律的形式在任何的惯性参考系中是相同的。这意味着物理规律对于一位静止在实验室里的观察者和一个相对于实验室高速等速运动着的电子是相同的。 光速不变原理:真空中的光速在任何参考系下是恒定不变的,(微中子的超光速现象实验已被证明有误,无法推翻相对论。 由此产生的理论比古典力学更能应付实验。例如,假设2解释了迈克生-莫雷实验的结果。此外,该理论具有许多令人惊讶发现。其中一些是: 同时性之相对性:发生在空间中不同位置的两个事件,它们的同时性并不具有绝对的意义,我们没办法肯定地说它们是否为同时发生。若在某一参考系中此两事件是同时的,则在另一相对于原参考系等速运动的新参考系中,此两事件将不再同时(唯一的例外为新参考系的移动方向恰好垂直于两事件空间位置的连线方向)。 时间膨胀:所有相对于一个惯性系统移动的时钟都会走得较慢,而这一效应已由劳仑兹变换精确地描述出来。 光速不变原理:不管是物理物体,还是讯息或是场线的传播速度都不能超过真空中的光速。 质能等价:E = mc2,能量和质量是等价的并且可以互换。 狭义相对论中的质量:一个物体所具有的总能量。 狭义相对论的定义是用劳仑兹变换代替了古典力学的伽利略变换。 (见马克士威方程组的电磁)。 光速不变原理 光速不变原理是狭义相对论的两个基础公设之一,在狭义相对论之中,指的是无论在何种惯性参照系中观察,光在真空中的传播速度相对于该观测者都是一个常数,不随光源和观测者所在参考系的相对运动而改变。这个数值是299,792,458公尺/秒。光速不变原理是由联立求解麦克斯韦方程组得到的,并为迈克耳孙-莫雷实验所证实。光速不变原理是爱因斯坦创立狭义相对论的基本出发点之一。在广义相对论中,由于所谓惯性参照系不再存在,爱因斯坦引入广义相对性原理,即物理定律的形式在一切参考系都是不变的,这也使得光速不变原理可以应用到所有参考系中。 爱因斯坦在1915年左右发表的一系列论文中给出了广义相对论最初的形式。他首先注意到了被称之为(弱)等效原理的实验事实:重力质量与惯性质量是相等的(目前实验证实,在{displaystyle 10^{-12}}10^{-12}的精确度范围内,仍没有看到重力质量与惯性质量的差别)。这一事实也可以理解为,当除了重力之外不受其他力时,所有质量足够小(即其本身的质量对重力场的影响可以忽略)的测验物体在同一重力场中以同样的方式运动。既然如此,则不妨认为重力其实并不是一种「力」,而是一种时空效应,即物体的质量(准确的说应当为非零的能动张量)能够产生时空的弯曲,重力源对于测验物体的重力正是这种时空弯曲所造成的一种几何效应。这时,所有的测验物体就在这个弯曲的时空中做惯性运动,其运动轨迹正是该弯曲时空的测地线,它们都遵守测地线方程式。正是在这样的思路下,爱因斯坦得到了其广义相对论。 系统的说,广义相对论包括如下2条基本假设。 : 广义相对性原理(广义协变性原理):任何物理规律都应该用与参考系无关的物理量表示出来。用几何语言描述即为,任何在物理规律中出现的时空量都应当为该时空的度规或者由其导出的物理量。 爱因斯坦场方程式(详见广义相对论条目): 它具体表达了时空中的物质(爱因斯坦张量)对于时空几何(黎曼曲率张量)的影响,其中对应力-能量张量的要求(其梯度为零)则包含了上面关于在其中做惯性运动的物体的运动方程式的内容。 广义相对论的一些发现: 重力时间膨胀:重力导致的时空扭曲率越大,时间就过得越慢 进动:是自转物体之自转轴又绕着另一轴旋转的现象。 (这已经在水星轨道和双星脉冲星中观察到了)。 光偏转:光线通过重力场时存在偏转。 参考系拖曳:处于转动状态的质量会对其周围的时空产生拖曳的现象。 宇宙加速膨胀:宇宙正在扩张,并且其远处的部分以比光速更快的速度远离我们。 从技术上讲,广义相对论是一种重力理论,其主要特征是它使用了爱因斯坦场方程式。场方程式的解是度量张量,它定义了时空的拓扑学结构以及对像如何惯性运动。 相对论主要在两个方面有用:一是高速运动(与光速可比拟的高速),一是强重力场。 在医院的放射治疗部,多数设有一台粒子加速器,产生高能粒子来制造同位素,作治疗或造影之用。氟代脱氧葡萄糖的合成便是一个古典例子。由于粒子运动的速度相当接近光速(0.9c-0.9999c),故粒子加速器的设计和使用必须考虑相对论效应。 全球卫星定位系统的卫星上的原子钟,对精确定位非常重要。这些时钟同时受狭义相对论因高速运动而导致的时间变慢(-7.2 μs/日),和广义相对论因(较地面物件)承受着较弱的重力场而导致时间变快效应(+45.9 μs/日)影响。相对论的净效应是,相较于地面上的时钟,全球卫星定位系统上的时钟运行地较快。因此,这些卫星的软体需要计算和抵消一切的相对论效应,以确保定位准确。 全球卫星定位系统的算法本身便是基于光速不变原理的,若光速不变原理不成立,则全球卫星定位系统则需要更换为不同的算法方能精确定位。 过渡金属如铂的内层电子,运行速度极快,相对论效应不可忽略。在设计或研究新型的催化剂时,便需要考虑相对论对电子轨态能级的影响。同理,相对论亦可解释铅的6s2惰性电子对效应。这个效应可以解释为何某些化学电池有着较高的能量密度,为设计更轻巧的电池提供理论根据。相对论也可以解释为何水银在常温下是液体,而其他金属却不是。 由广义相对论推导出来的重力透镜效应,让天文学家可以观察到黑洞和不发射电磁波的暗物质,和评估质量在太空的分布状况。 值得一提的是,原子弹的出现和著名的质能关系式(E=mc2)关系不大,而爱因斯坦本人也肯定了这一点。质能关系式只是解释原子弹威力的数学工具而已,对实作原子弹意义不大。 重力时间膨胀:重力导致的时空扭曲率越大,时间就过得越慢 引力时间膨胀(Gravitational time dilation)是指在宇宙有不同势能的区域会导致时间以不同的速率度过的现象,引力导致的时空扭曲率越大,时间就过得越慢。爱因斯坦最初在自己的相对论中预测出这种现象,并其后由各种广义相对论实验中被证实。 其中一种证实方法就是把两个原子钟放在不同的高度(因此来自地球的引力效应会有差别),它们在一段时间后所测到的时间会有些许差别。其差别极小极小,甚至要用到纳秒来作单位。 引力时间膨胀首次由爱因斯坦于1907年提出,并是狭义相对论中参照对象的加速前进所导致的结果。在广义相对论中,它被视为是时空度规张量描述的在不同地点的原时的差。庞德-雷布卡实验首次直接证实了这种现象的存在。
爱因斯坦相对论
关于作者
沃尔特·艾萨克森,著名的传记作家,代表作有《乔布斯传》《基辛格传》以及《富兰克林传》。
关于本书
这本书的独特之处在于,它是在爱因斯坦生前所有文稿解密之后问世的,作者参考了大量爱因斯坦的手稿以及与他人往来的书信,增加了这本传记的真实性和完整性。这本书还有另一个特点,就是作者用相对通俗的语言解释了复杂高深的科学理论,很多物理学领域的专业人士都对这本书给出了高度评价。这本书的结构非常清晰,作者按照时间顺序把全书划分成二十五个章节,每个章节都对应着一个主题,展现了爱因斯坦生命中的重要事件。本书荣获美国国家科学院2008年度科学传播最佳图书奖。
核心内容
本期音频将通过解读爱因斯坦身上最突出的三个身份标签,帮你更加全面立体地了解这位传奇人物的一生。这三个标签分别是:物理学家、犹太人以及民主主义者。
你好,欢迎每天听本书,这一期要说的这本书叫做《爱因斯坦传》,是一本关于爱因斯坦的人物传记。
说到爱因斯坦,很多人马上就会想起他的照片:蓬乱的头发,炯炯有神的眼光,还喜欢叼着烟斗,一个典型的科学怪咖的形象。我们也都知道他是一位伟大的物理学家,创立了相对论,还曾经推动美国研制原子弹,促使二战提前结束。如果我问,你对爱因斯坦还了解什么呢?你可能就说不上来了。那真实的爱因斯坦到底是怎样一个人呢?从这本传记中我们可以了解到,他不仅在科学上做出了伟大的成就,也曾经积极参与政治活动;他既喜欢安静地独处,也享受被万众瞩目的感觉;他既关心被战争和独裁统治迫害的陌生人,也有对身边人苛刻和冷酷的一面。通过还原他的一生,我们可以看到一个更加真实和立体的爱因斯坦。
这本书的作者是沃尔特·艾萨克森,他是一位著名的传记作家。艾萨克森的作品有《乔布斯传》《基辛格传》以及《富兰克林传》,得到“每天听本书”栏目还解读过《富兰克林传》。这些传记每一本都堪称传记中的经典之作。艾萨克森擅长从海量的历史文献中抽丝剥茧,他的作品不仅仅是探索人物的生平事迹,还会对人物的思想演变过程进行分析和洞察,尽可能塑造出一个真实、生动的形象。在他的笔下,伟人自有其伟大之处,同时也像普通人一样有各自的缺点,但恰恰是这些缺点使人物形象看起来更加真实,这本《爱因斯坦传》也是如此。
关于爱因斯坦的传记有很多,据不完全统计有不下两百本。但是这本书的独特之处在于,它是在爱因斯坦生前所有文稿解密之后问世的,作者参考了大量爱因斯坦的手稿以及与他人往来的书信,增加了这本传记的真实性和完整性。比如,很多人都认为爱因斯坦支持美国制造原子弹,但是这本书通过分析爱因斯坦和当时美国总统罗斯福的往来书信,我们可以看到爱因斯坦之所以会建议美国研制原子弹,是担心如果纳粹德国先研制出来,会对国际安全造成严重威胁。但爱因斯坦同时也担心政府不能慎重使用核武器,他认为如果美国已经确保战争取得胜利,原子弹还是不用为好。可惜他担心的事最终还是发生了,在德国宣布投降以后,美国相继把两颗原子弹投到了日本的广岛和长崎。事后,爱因斯坦发出了一声悲叹,他说,要是早知道德国不能成功研制出原子弹,他一点力都不会出。
除了参考资料完备之外,这本书还有另一个特点,就是作者用相对通俗的语言解释了复杂高深的科学理论。比如在介绍狭义相对论的时候,作者通过爱因斯坦关于火车的思想实验,解释了为什么对于静止和运动的两个人来说,他们对时间的感知不同,也就是时间的相对性。这一点非常重要,因为想了解爱因斯坦,他的理论是绕不过的一道坎。他一手建立了相对论,并且为量子力学的开创做出了巨大贡献,这两项理论共同构成现代物理学的两大基础。很多物理学领域的专业人士都对这本书给出了高度评价。
这本书的结构非常清晰,作者按照时间顺序把全书划分成二十五个章节,每个章节都对应着一个主题,展现了爱因斯坦生命中的重要事件。介绍完这本书的基本情况,下面我将通过解读爱因斯坦身上最突出的三个身份标签,帮你更加全面立体地了解这位传奇人物的一生。这三个标签分别是:物理学家、犹太人以及民主主义者。毫无疑问,爱因斯坦是人类历史上最伟大的物理学家之一,他的智慧为人类科学进步做出了巨大的贡献。但他的科学研究之路并不算平坦,因为犹太人的身份,他的研究成果受到一些民族主义者的偏见,并且在德国纳粹上台之后,他被迫离开当时的世界理论物理学中心柏林,流亡到美国。因为见识到专制统治和战争对人类的危害,爱因斯坦一生都在积极倡导和平与自由。所以他的伟大之处,不仅在于他的科学贡献,也在于他对于人类命运的深切关心。
第一部分
我们先说说他的第一个身份标签:物理学家。
说到爱因斯坦的科学贡献,很多人都能想到相对论,但因为相对论非常高深,同时我们在生活中很少实际应用,所以大部分人既不清楚相对论讲了什么,也不知道它的伟大之处到底在哪里。其实我们生活中经常使用的 GPS,就用到了狭义相对论的原理。
在这里要简单介绍一下狭义相对论是怎么回事。很多人都听说过,1905年被称为物理学上的奇迹年,因为这一年,25岁的爱因斯坦陆续发表了4篇研究论文,每一篇都称得上是重大发现,其中就包括著名的狭义相对论。当时物理学界普遍认同牛顿的绝对时空观,就是不管静止的物体还是运动的物体,你会发现物体的大小以及时间的流逝都是不变的,这也符合我们一般人的认知。但狭义相对论认为,空间和时间都是相对的,一个物体的运动速度越快,它的尺寸就越小,时间流逝的速度也会变慢。对于 GPS 卫星来说,一方面由于卫星围绕地球高速飞行,所以卫星上的时间比地球表面的时间要慢;另一方面 GPS 对时间的准确度要求又非常高,所以就要根据广义相对论和狭义相对论相互作用的影响来校正时间误差。可以说,如果没有狭义相对论的话,GPS 定位根本没法用。另外,狭义相对论还包括著名的质能方程 E=mc²,说的是能量等于质量乘以光速的平方。这个质能方程是研制原子弹的一个理论基础。
虽然狭义相对论很了不起,但其实爱因斯坦还有两项更加伟大的理论,一个是广义相对论,一个是光量子理论。广义相对论颠覆了人们对引力的认知,它认为引力的本质是物体使时空产生了弯曲。就好比你把球放在一个蹦床上,球的质量会使蹦床弯曲,弯曲就产生了引力。现在我们耳熟能详的黑洞、引力波这些概念,都能通过广义相对论推导出来。如果未来人类可以到太空进行宇宙航行,广义相对论是必不可少的。而光量子理论揭示了光的性质。当时物理学界普遍认同光是一种电磁波,既然是电磁波那就是连续波动的,就像海面上的波浪一样。但爱因斯坦提出,光同时也有粒子的性质,光由一个个叫做光子的微小粒子组成。爱因斯坦对光电效应的解释直接推动了量子力学的诞生。量子力学我们虽然不太了解,但它的应用我们却很熟悉。我们平时使用的手机和电脑,这些电子设备处理器上使用的晶体管,就跟量子力学有关。可以说,如果没有量子力学,人类就不可能进入到现在的信息社会。
当然,不管是相对论还是量子力学,都不是简单几句话可以讲清楚的,但通过刚才的介绍,相信我们对爱因斯坦这些科学成就的意义会有更具体的认识。同时我们也可以看到,他的每一项理论都很颠覆常识,在当时的物理学界,这些理论也非常前卫。其实爱因斯坦所处的那个时代,物理学界也是人才辈出,比如波尔、薛定谔、泡利等等,都是非常著名的物理学家。但为什么爱因斯坦最终取得了远超同时代人的伟大成就,而不是其他人呢?作者推测了很多可能的原因,包括爱因斯坦拥有过人的智慧;在瑞士专利局工作时,不仅工作环境轻松,同时可以接触大量的研究专利;还有其他同行直接或者间接提供的帮助;等等。这些可能都起到了一些作用,但作者认为,还有两个至关重要的原因。一个是爱因斯坦独立思考、不迷信权威的性格特点;另一个是他始终抱有一个信念,相信宇宙中存在一套简洁、理性、统一的自然规律,所有事物的发展演化都遵循这套规律,它无处不在,同时又很难被发现。
比如,在爱因斯坦发表狭义相对论之前,几乎是同一时间,还有另外一名科学家庞加莱也推导出了类似的方程。但庞加莱要保守很多,他虽然也对时间的绝对性有过怀疑,但最终还是没有勇气彻底颠覆牛顿的绝对时空观。用另外一位物理学家的话说,其实也不能怪庞加莱太保守,只能说改变人们固有的时空观念这件事太需要勇气了。年轻的爱因斯坦没有那么多顾虑,他相信理性思考的判断,从来都不觉得权威就是正确的。在物理学的发展过程中,其实每一次重大发现都是理性对常识的颠覆,哥白尼提出日心说是这样,爱因斯坦提出相对论也是这样。另外,牛顿假设空间中存在一种叫以太的物质,包括光在内的所有物体都是相对于以太做运动,庞加莱也保留了以太的假设,但这意味着要凭空加上一个根本观测不到的东西,跟爱因斯坦坚信的宇宙规律的简单性也不相符,于是他果断抛弃经典物理学,提出了狭义相对论。
但是爱因斯坦并不满足,他很快就发现狭义相对论有局限性。一方面狭义相对论规定所有事物速度都不能超过光速,但牛顿的引力理论又认为,引力可以在远距离的物体之间瞬间发生作用,两者有冲突;其次,狭义相对论只能用在匀速直线运动的情况下,适用范围比较窄。为了使相对论的适用范围更广,爱因斯坦开始着手研究新的理论,也就是后来的广义相对论。他先是从物理上思考引力本质,也就是我们前面讲的时空弯曲。然后他还找自己的好朋友格罗斯曼帮忙解决一些数学问题。格罗斯曼的数学非常好,这正是爱因斯坦欠缺的。经过长达十年的努力,等到1915年的时候,广义相对论才终于完成。
简单总结一下第一部分内容。我们介绍了爱因斯坦在物理学上的主要成就,以及这些成就对人类社会的巨大意义。爱因斯坦之所以能一次次发现颠覆性的理论,主要的一个原因是爱因斯坦独立思考、不迷信权威的性格特点,这个特点赋予爱因斯坦颠覆常识的勇气。
第二部分
但是我们前面也说过,爱因斯坦的科研之路走得并不平坦,这很大程度上是因为他犹太人的身份。下面我们继续介绍爱因斯坦身上的第二个标签:犹太人。看看犹太人的身份给爱因斯坦的人生带来了哪些麻烦,又是如何深刻地影响他的所作所为。
1919年对爱因斯坦来说是非常不平凡的一年,这一年发生了两件重要的事。第一件事是英国科学家爱丁顿和戴森带领的观测队,利用日食现象成功观测到了光线在太阳引力作用下的偏移数据。这个数据比用牛顿引力理论计算出来的结果大一倍,但跟相对论的预测结果却十分吻合。许多媒体对这件事都做了大量报道,说爱因斯坦推翻了牛顿的理论,甚至有人说爱因斯坦的理论是人类思想史上最伟大的成就。这下爱因斯坦不仅在科学界,甚至在公众心中都获得了极高的声望。第二件事是第一次世界大战刚刚结束,德国作为战败国不仅自尊受到了挫败,还背上了沉重的赔偿债务。一部分德国人为了寻找替罪羊,把战败的原因归结到了犹太人身上,认为犹太人出卖了德国,于是德国反犹主义开始抬头。恰好这时候爱因斯坦刚刚成名,他是一名犹太人,也长期居住在德国,所以自然而然就成为反犹主义者的攻击对象。
比如当时有一个人叫保罗·魏兰德,他是德国右翼民族主义政党的激进分子。魏兰德意识到,其实很多科学家都对相对论抱有怀疑态度,认为相对论只是一种抽象的假说,而不是建立在牢靠的实验基础之上,于是就发表文章,谴责相对论是一场大骗局,还召集了一群二流科学家一起攻击相对论,说爱因斯坦的学说带有强烈的犹太性,意思是看起来高深玄妙,其实就是在忽悠人。爱因斯坦看到这些言论非常生气,他在报纸上发表文章展开反击,还说“假如我是德国的民族主义者而不是犹太人,他们就不会攻击我的理论”。正所谓看破不说破,爱因斯坦的耿直正好中了敌人的下怀,他的言论不仅没能澄清事实,反而给自己带来更多不好的名声。
犹太身份给爱因斯坦带来的麻烦不光体现在公众舆论上,也使他在科学界受到了不公正的对待。1919年的日食观测数据印证了相对论的正确性,按理说爱因斯坦应该可以获得1920年的诺贝尔物理学奖才对,但结果并没有。有一位当时著名的物理学家勒纳德,他积极劝说其他科学家,让他们相信相对论其实算不上一个发现,也没有得到证明,那些所谓的实验数据可以通过其他理论解释。勒纳德批评相对论具有犹太科学的特征,本质上是一种哲学臆想。当时诺贝尔奖委员会主席显然支持勒纳德的观点,主席在解释爱因斯坦为什么没有获奖的报告中,就引用了勒纳德和其他反犹主义者的论证。到了第二年也就是1921年,爱因斯坦获奖的呼声已经远超其他人,但仍然有一些人试图阻止,最终1921年的诺贝尔物理学奖谁也没有得。直到1922年,爱因斯坦才获奖,但是获奖原因还不是相对论,而是他的光量子理论。
也就是在这个时期,爱因斯坦感受到德国歧视和迫害犹太人的现象越来越严重,他开始重视自己的犹太人身份,也对自己的民族同胞感到同情。为了生存,一部分犹太人通过改变自己的宗教信仰和文化传统,试图彻底放弃犹太人的身份,强调自己是一个德国人或者西欧人。爱因斯坦一方面对这种行为进行公开批评,倡导不同民族和平共处,另一方面采取实际行动支持犹太复国主义,也就是犹太人建立自己的国家。这相当于对反犹主义者的公开宣战,为此爱因斯坦还收到过纳粹分子的暗杀威胁。当时爱因斯坦已经成名,他到世界各地进行演讲,为犹太复国组织募集资金,第一站就是美国。爱因斯坦在美国受到了政府和民众的热烈欢迎,几乎每一次演讲都座无虚席,但那些真正有钱有势的美国犹太人却很少参与,所以最后募资的结果并不是很理想。可以说,支持犹太复国运动是爱因斯坦第一次在国际舞台上表达自己的政治主张。虽然爱因斯坦付出了很多努力,但实际上收效甚微,他作为一名科学家可以改写物理学的历史,但在国际政治中却是无力的。1933年,希特勒成为了德国总理,开始对犹太人进行全面清洗,爱因斯坦的家也被抄了。不过爱因斯坦似乎早就预料到了,当时他已经举家搬到美国,幸运地躲过一劫。
我们来总结一下这部分内容。在第一次世界大战后,德国反犹主义兴起的背景下,爱因斯坦作为一名风头正盛的犹太科学家,他不仅受到了舆论谣言的困扰,在科学界也因为自己的犹太身份受到了不公正的质疑。但他并没有像某些犹太人一样,选择通过委曲求全的方式谋求生存,而是通过实际行动支援犹太复国运动,利用自己的影响力为犹太民族发声。
第三部分
很多人可能都认为,像爱因斯坦这样的科学家,应该是一心投入科学研究,不会过多地参与政治。但事实上,爱因斯坦从年轻时就有着自己鲜明的政治主张,他倡导和平,同情受压迫者,强调社会正义,同时反对狭隘的民族主义和军国主义。但是在纳粹上台之后,他改变了一贯的反战态度,意识到纯粹的和平主义无法抵御暴政和战争狂热的威胁,因此他也参与了反对专制的政治运动。下面我们继续介绍爱因斯坦身上的第三个标签:反对专制和暴政的民主主义者。
从中学时代起,爱因斯坦就非常反感学校的专制氛围,当时整个德国社会都比较压抑,军国主义盛行,所以爱因斯坦就干了一件事,他放弃了自己的德国国籍。其实,爱因斯坦一直以来对国家和民族的意识都比较淡薄,即使他在行动上支援犹太复国运动,也是出于保护犹太人生存权利的无奈之举。1946年,他在华盛顿向一个研究巴勒斯坦局势的国际委员会作证时提出,应该让更多的犹太人移民入境,但并不认为犹太人应当组建一个国家。他认为人们应该弱化国家的重要性,把自己看成一个世界公民。而且为了维持世界的和平秩序,仅仅靠缔结条约或者裁军是不够的,应该削减国家的权力,同时建立强有力的世界政府来维持秩序。这种通过建立凌驾于国家之上的组织来维持和平的政治理想,可以说贯穿了爱因斯坦的一生。
很多人可能觉得爱因斯坦的想法太理想化,实际上,放在当时的时代背景下,这种想法是有根据的。第一次世界大战之后,一些国家组建了一个叫国际联盟的组织,这个组织就是现在联合国的前身。国际联盟的宗旨就是减少武器数量、平息国际纠纷、促进国际贸易。但是国际联盟没有军队武力,所以在处理国际冲突时必须依赖大国的力量,最后难免沦为大国操纵的工具,很难真正发挥作用。在国际联盟的牵线搭桥下,爱因斯坦曾经和著名心理学家弗洛伊德进行公开讨论,主要是探讨战争的原因以及避免战争的方法。两个人的往来信件被集结成册,名字叫《为什么要战争》。爱因斯坦首先指出,像国际联盟这样的组织想要真正发挥作用,掌握军事力量是必不可少的,同时,每个国家都要放弃自由采取军事行动的权力,这几乎不可能做到。因为一方面,统治阶层的典型特征就是对权力充满渴望,他们肯定抵触任何对国家权力的限制;另一方面,人类内心深处天生就存在仇恨和毁灭的欲望,统治阶层利用教育、媒体、宗教这些途径,很容易就能控制大众的情绪。所以爱因斯坦认为,想要真正避免战争,或许可以从抵御人类仇恨和毁灭的欲望入手。从爱因斯坦跟弗洛伊德讨论的内容可以看出,在他看似理想化的政治主张中,包含着对政治和人性的深刻见解。
在爱因斯坦晚年,有一件事更加坚定了他的想法,就是美国用原子弹轰炸了日本的广岛和长崎。我们前面也说过,爱因斯坦曾经积极建议美国研制原子弹,原因是担心如果德国先研制出来,会对世界和平造成严重威胁,但他同时也认为核武器不应该控制在某个国家手里。在美国使用了原子弹之后,一些科学家签署了一份联合声明,目的是建议政府组建一个国家顾问委员会来控制核武器。爱因斯坦随后给领导研制原子弹的物理学家奥本海默写了一封信,信中说他理解这份声明背后的情感,但他认为如果不能建立一个凌驾于各国之上的政府组织来指导国际关系,实现和平是不可能的。在接下来的几个月里,爱因斯坦继续在一些文章和采访中发出倡议,不过显然他的努力并没有起到什么作用。20世纪40年代末,有人采访爱因斯坦时问他下一次世界大战是什么样子,他回答说他不知道第三次世界大战会用什么武器,但他知道第四次世界大战肯定是用石头。
简单总结一下最后一个重点内容。爱因斯坦从年轻时就有着自己鲜明的政治主张,他认为想要维持世界的和平秩序,仅仅靠缔结条约或者裁军是不够的,应该削减国家的权力,同时建立强有力的世界政府来维持秩序。这种通过建立凌驾于国家之上的组织来维持和平的政治理想,贯穿了爱因斯坦的一生。
总结
说到这,本期音频的内容就聊得差不多了,下面来简单总结一下为你分享的内容。
首先,爱因斯坦一手创建了相对论,他的光量子理论成为量子力学的重要基础,这些成就使他成为人类历史上最伟大的科学家。爱因斯坦之所以能一次次发现颠覆性的理论,有两个至关重要的原因:一个是他独立思考、不迷信权威的性格特点,这个特点赋予爱因斯坦颠覆常识的勇气;另一个原因,是他相信宇宙中存在一套简洁、理性、统一的自然规律,这个信念促使他为了探索科学真理不断进行自我突破。
其次,爱因斯坦的科学研究之路并不算平坦,在德国反犹主义情绪日益高涨的背景下,他的研究成果受到大量的攻击。犹太人受到的不公正待遇,激起了爱因斯坦对犹太同胞的同情,所以他积极支持犹太复国主义,利用自己的影响力为犹太民族发声。
最后,爱因斯坦作为一名民主主义者,他也有着自己独特的政治主张。他认为想要实现真正的和平,需要建立一个凌驾于国家之上的组织,这个组织不是一个软弱的协调者,而是一个强有力的仲裁者。这种想法看起来很理想化,但背后隐藏着爱因斯坦对政治和人性的深刻洞察。